旋转编码器的介绍

2024-05-18 17:08

1. 旋转编码器的介绍

旋转编码器是用来测量转速并配合PWM技术可以实现快速调速的装置,光电式旋转编码器通过光电转换,可将输出轴的角位移、角速度等机械量转换成相应的电脉冲以数字量输出(REP)。它分为单路输出和双路输出两种。技术参数主要有每转脉冲数(几十个到几千个都有),和供电电压等。单路输出是指旋转编码器的输出是一组脉冲,而双路输出的旋转编码器输出两组A/B相位差90度的脉冲,通过这两组脉冲不仅可以测量转速,还可以判断旋转的方向。

旋转编码器的介绍

2. 旋转编码器的用途?


3. 旋转编码器的用途?

绝对型:马达旋转时,可测得单位时间的角位移(角速度).
                可计算轴指定点的绝对角位移量.
    马达停止时,反馈当前轴指定点的具体角度.
          停电后再启动,便于恢复数据.
    控制马达时,当设备带动编码器旋转到某角度时,可启/停马达.
                          可使马达加/减速.
    控制步进电机,匹配好旋转编码器的当量与步进电机的基本步进角.
           即一个基本步进角对应几个编码值(最好是整数),
           可控制步进电机的速度和角度(距离).
增量型:马达旋转时,可测得单位时间的角位移(角速度).
                可计算轴指定点的相对角位移量.
    马达停止时,无反馈信号,可确定马达为"0"速度.不能表示角度.
    控制马达时,根据反馈速度,控制马达加/减速,启/停和保持速度.
          一般不用于角位移控制.
仅供参考.

旋转编码器的用途?

4. 旋转编码器怎么使用

旋转编码器是用来测量转速并配合PWM技术可以实现快速调速的装置,光电式旋转编码器通过光电转换,可将输出轴的角位移、角速度等机械量转换成相应的电脉冲以数字量输出(REP)。
          分为单路输出和双路输出两种。技术参数主要有每转脉冲数(几十个到几千个都有),和供电电压等。单路输出是指旋转编码器的输出是一组脉冲,而双路输出的旋转编码器输出两组A/B相位差90度的脉冲,通过这两组脉冲不仅可以测量转速,还可以判断旋转的方向。
1、使用分类
有轴型:有轴型又可分为夹紧法兰型、同步法兰型和伺服安装型等。

轴套型:轴套型又可分为半空型、全空型和大口径型等。




2、以编码器工作原理可分为:
光电式、磁电式和触点电刷式。

3、按码盘的刻孔方式不同分类编码器可分为增量式和绝对式两类。
            增量式BEN编码器是将位移转换成周期性的电信号,再把这个电信号转变成计数脉冲,用脉冲的个数表示位移的大小。绝对式编码器的每一个位置对应一个确定的数字码,因此它的示值只与测量的起始和终止位置有关,而与测量的中间过程无关。
            旋转增量式编码器以转动时输出脉冲,通过计数设备来知道其位置,当编码器不动或停电时,依靠计数设备的内部记忆来记住位置。这样,当停电后,编码器不能有任何的移动,当来电工作时,编码器输出脉冲过程中,也不能有干扰而丢失脉冲,不然,计数设备记忆的零点就会偏移,而且这种偏移的量是无从知道的,只有错误的生产结果出现后才能知道。

4、绝对编码器
             绝对编码器光码盘上有许多道刻线,每道刻线依次以2线、4线、8线、16线编排,这样,在编码器的每一个位置,通过读取每道刻线的通、暗,获得一组从2的零次方到2的n-1次方的唯一的2进制编码(格雷码),这就称为n位绝对编码器。这样的编码器是由码盘的机械位置决定的,它不受停电、干扰的影响。


旋转编码器/增量或绝对值编码器/拉线编码器(16张)

               绝对编码器由机械位置决定的每个位置的唯一性,它无需记忆,无需找参考点,而且不用一直计数,什么时候需要知道位置,什么时候就去读取它的位置。这样,编码器的抗干扰特性、数据的可靠性大大提高了。
由于绝对编码器在定位方面明显地优于增量式编码器,已经越来越多地应用于工控定位中。绝对型编码器因其高精度,输出位数较多,如仍用并行输出,其每一位输出信号必须确保连接很好,对于较复杂工况还要隔离,连接电缆芯数多,由此带来诸多不便和降低可靠性,因此,绝对编码器在多位数输出型,一般均选用串行输出或总线型输出,德国生产的绝对型编码器串行输出最常用的是SSI(同步串行输出)。

5. 旋转编码器怎么使用

DD马达该如何选择合适的编码器?

旋转编码器怎么使用

6. 旋转编码器怎么使用

旋转编码器是用来测量转速并配合PWM技术可以实现快速调速的装置,光电式旋转编码器通过光电转换,可将输出轴的角位移、角速度等机械量转换成相应的电脉冲以数字量输出(REP)。
分为单路输出和双路输出两种。技术参数主要有每转脉冲数(几十个到几千个都有),和供电电压等。单路输出是指旋转编码器的输出是一组脉冲,而双路输出的旋转编码器输出两组A/B相位差90度的脉冲,通过这两组脉冲不仅可以测量转速,还可以判断旋转的方向。
1、使用分类
有轴型:有轴型又可分为夹紧法兰型、同步法兰型和伺服安装型等。
轴套型:轴套型又可分为半空型、全空型和大口径型等。
2、以编码器工作原理可分为:
光电式、磁电式和触点电刷式。
3、按码盘的刻孔方式不同分类编码器可分为增量式和绝对式两类。
增量式BEN编码器是将位移转换成周期性的电信号,再把这个电信号转变成计数脉冲,用脉冲的个数表示位移的大小。绝对式编码器的每一个位置对应一个确定的数字码,因此它的示值只与测量的起始和终止位置有关,而与测量的中间过程无关。
旋转增量式编码器以转动时输出脉冲,通过计数设备来知道其位置,当编码器不动或停电时,依靠计数设备的内部记忆来记住位置。这样,当停电后,编码器不能有任何的移动,当来电工作时,编码器输出脉冲过程中,也不能有干扰而丢失脉冲,不然,计数设备记忆的零点就会偏移,而且这种偏移的量是无从知道的,只有错误的生产结果出现后才能知道。
4、绝对编码器
绝对编码器光码盘上有许多道刻线,每道刻线依次以2线、4线、8线、16线编排,这样,在编码器的每一个位置,通过读取每道刻线的通、暗,获得一组从2的零次方到2的n-1次方的唯一的2进制编码(格雷码),这就称为n位绝对编码器。这样的编码器是由码盘的机械位置决定的,它不受停电、干扰的影响。
旋转编码器/增量或绝对值编码器/拉线编码器(16张)
绝对编码器由机械位置决定的每个位置的唯一性,它无需记忆,无需找参考点,而且不用一直计数,什么时候需要知道位置,什么时候就去读取它的位置。这样,编码器的抗干扰特性、数据的可靠性大大提高了。
由于绝对编码器在定位方面明显地优于增量式编码器,已经越来越多地应用于工控定位中。绝对型编码器因其高精度,输出位数较多,如仍用并行输出,其每一位输出信号必须确保连接很好,对于较复杂工况还要隔离,连接电缆芯数多,由此带来诸多不便和降低可靠性,因此,绝对编码器在多位数输出型,一般均选用串行输出或总线型输出,德国生产的绝对型编码器串行输出最常用的是SSI(同步串行输出)。

7. 旋转编码器的应用

本系统采用相对计数方式进行位置测量。运行前通过编程方式将各信号,如换速点位置、平层点位置、制动停车点位置等所对应的脉冲数,分别存入相应的内存单元,在电梯运行过程中,通过旋转编码器检测、软件实时计算以下信号:电梯所在层楼位置、换速点位置、平层点位置,从而进行楼层计数、发出换速信号和平层信号。  电梯运行中位移的计算如下:H=SI  式中S:脉冲当量 I:累计脉冲数 H:电梯位移  S=πλD/Pρ  D:曳引轮直径 ρ:PG卡的分频比 λ:减速器的减速比  P:旋转编码器每转对应的脉冲数  本系统中λ=1/32  D=580mm  Ned=1450r/min P=1024 ρ=1/18  代入S=πλD/Pρ 得S=1.00 mm/脉冲  设楼层的高度为4m,则各楼层平层点的脉冲数为:1楼为0;2楼为4000;3楼为8000;4楼为12000。  设换速点距楼层为1.6米,则各楼层换速点的脉冲数为:上升:1楼至2楼为2400,2楼至3楼为6400,3楼至4楼为10400;下降:4楼至3楼为9600,3楼至2楼为5600,2楼至1楼为1600。

旋转编码器的应用

8. 旋转编码器的用途是什么?

主要是用于定位。除了定位还可以远传当前位置,换算运动速度,对于变频器,步进电机等的应用尤为重要。
旋转编码器
旋转编码器是用来测量转速并配合PWM技术可以实现快速调速的装置,光电式旋转编码器通过光电转换,可将输出轴的角位移、角速度等机械量转换成相应的电脉冲以数字量输出(REP)。