光学镜片光圈易变怎么处理

2024-05-19 19:31

1. 光学镜片光圈易变怎么处理

如果是凹镜片或者是双凹镜片就要在中心垫上一层隔离纸既可。光学交流BN08098笨牛

光学镜片光圈易变怎么处理

2. 那位知道光学检验程序,方法。和设备名称, (光圈怎么看)越详细越好,谢谢

光学检验 如果检验镜片都是看 偏心 和 光圈
偏心用 偏心仪器~
看 光圈用 的是 干涉仪~
具体方法不能讲的太详细啊,我们公司是做这个产品的 都会针对仪器来进行培训(所以你懂的)
而且说起来太麻烦。。主要原理就是通过干涉来看光圈,一半加工精密光学精度都能控制在1个光圈,大一点的镜片也能控制在3个光圈左右

3. λ/4@633nm 这在光学镜片参数上怎么讲?

λ/4@633nm 指在633波长(即HE-NE激光波长)下四分之一波长。如果是出现在镀膜规格中,指膜厚为四分之一波长(增透膜)
S/D:40-20指的是,在美军规MIL13830(MIL13830B)中。镜片线伤,点伤的规格是40-20
N=3-4,是表面曲率误差牛顿圈3~4个圈
后面那个是局部不规则度牛顿圈0.3~0.4个圈

λ/4@633nm    这在光学镜片参数上怎么讲?

4. 光学里的亚斯是什么?~

亚斯是指光圈的局部偏差,加工过程中工件表面可能在局部不规则,那么在此处光圈形状会产生不规则变化,即产生了局部光圈偏差。
光学系统中起特殊作用(如分光、传像、滤波等)的零件,如分划板、滤光片、光栅用以光学纤维件等。全息透镜、梯度折射率透镜、二元光学元件等,是一二十年来出现的新型光学零件。

扩展资料:
1860年前后麦克斯韦的理论研究指出,电场和磁场的改变,不能局限于空间的某一部分,而是以等于电流的电磁单位与静电单位的比值的速度传播着。
光就是这样一种电磁现象。这个结论在1888年为赫兹的实验证实。按麦克斯韦的理论,若以c代表光在真空中的速度,v代表光在介电常数为ε和磁导率为μ的透明介质中的速度,则有:
c/v=(εμ)1/2
式中c/v恰为介质的折射率,所以有:
n=(εμ)1/2
上式给出了透明介质的光学常数n跟电学常数ε和磁学常数μ的关系。在认识光的物理性质方面,麦克斯韦理论较以前各种理论向前迈进了一大步。
参考资料来源:百度百科-光学

5. 光学天文望远镜的镜片是什么材质的?

光学望远镜,使用人眼可见光形成恒星和星系的像的望远镜,是用于收集可见光的一种望远镜,并且经由聚焦光线,可以直接放大影像、进行目视观测或者摄影等等,特别是指用于观察夜空,固定在架台上的单筒望远镜,也包括手持的双筒镜和其他用途的望远镜。
种类与用途
光学望远镜分为折射式望远镜、反射式望远镜、施密特望远镜。19世纪初期折射式望远镜还是天文学界的主流,当时研究的重点在天体测量,邻近恒星的位置测定。随着时代的演变,天文学家开始探索到银河系以外的星系,研究整个宇宙的结构,巨无霸的大型反射望远镜便取代折射式望远镜的地位。[1]
光学望远镜
而施密特望远镜更拍摄到许多深远微暗的天体照片,让天文学家能按图索骥地去研究探索数10亿光年之遥的宇宙深处。所以20世纪是反射式望远镜与施密特望远镜的时代,而21世纪更将是无线电电波望远镜的时代。
19世纪天文望远镜主流──折射式德国汉堡大学80厘米折射镜。
20世纪统一天文学语言的施密特望远镜,这是澳洲的UKST。
20世纪天文望远镜主流──反射式,这是德国蔡司的3.5口径反射望远镜。[2]
著名型号
胡克望远镜
1917年,胡克望远镜在加州威尔逊山天文台建成。其主反射镜直径为2.54米,在其建成后30年,它一直是全世界最大的天文望远镜。正是利用这座望远镜,埃德温·哈勃发现了银河系外的星系,并找到了宇宙膨胀的证据。
光学望远镜
海尔望远镜
直径5.08米的海尔反射式望远镜坐落在美国帕洛玛山上。它于上世纪三四十年代建造,1948年完成,建造技术在当时堪称奇迹。虽然从1993年以后,海尔作为最大反射式光学望远镜的地位已被取代,但仍在为宇宙探索发挥重要作用。
凯克望远镜
目前世界上最大的光学天文望远镜,位于夏威夷莫纳克亚山。其双子KeckI和KeckII分别在1993年和1996年建成。直径都是10米,由36块直径1.8米的六角镜面拼接组成。通过电脑控制的主动光学支撑系统调节,使镜面保持极高的精度。
凯克望远镜
超大望远镜
1999年,欧洲南方天文台在智利建造了超大望远镜。它是由4台8米直径望远镜组成的一台等效直径达到16米的光学望远镜。这4台望远镜可以组成一个干涉阵,做两两干涉观测,也可以单独使用每一台望远镜。它可以在不同波段观测超新星等遥远天体。
昴星团望远镜
日本的昴星团望远镜是目前世界上最大直径的单面反射镜,其直径达8.3米。坐落在夏威夷莫纳克亚山上,建造完成于1999年。据称,仅仅是抛光其超大镜面就花去了7年时间。昴星团望远镜使用了主动光学和自适应光学技术,支持镜面的是261个机械手指,它们可以不断调整镜面的形状以获得最佳成像。
行星搜寻
“地外行星搜寻者”是美国宇航局空间计划的“点睛”之笔,计划于2012年发射升空。它汇集了人类太空望远镜 技术的精华,将在寻找太空生命方面崭露头角。“地外行星搜寻者”的设计思路与空间干涉望远镜相似,但在规模与性能上有重大突破。空间干涉望远镜的可收卷镜阵延伸9米上下,而“地外行星搜寻者”的镜面阵列延展可达百米。利用它空前的分辨率,人们将足以探明,在太阳系邻近数十光年之内,是否存在与地球条件相似的行星,并进一步为解开地外生命的“悬念”获取宝贵的线索。
地外行星搜寻者模型
总之,21世纪的“天眼”,将具备前所未有的高灵敏度、高分辨率、大视场以及多天体观测能力。就整体而言,它们观测宇宙的效能将全面超越其“老大哥”,哈勃太空望远镜,从而全方位地开阔人类探测宇宙的视界。长久以来,人们仰望天空,看见日月星辰东升西落,有过天圆地方、地心说、日心说等宇宙模型。从前,人们只能用肉眼对星空进行观察,观测范围非常局限,所得的数据资料也就非常有限。
工作原理
关于反射、折射和折反射望远镜具体设计和详细的资料,请参阅反射望远镜、折射望远镜和折反射望远镜条目
设计图中最基本的元素是收集光线的物镜(透镜(1)或凹面镜)、在一段距离外的物体(4)在焦平面上形成一个实像(5)。这个影像可以被记录或经过作用如同放大镜的目镜(2),让眼睛(3)可以看见远处被放大的虚像(6)。
刻卜勒式望远镜的简图。
使用两个凸透镜成像的望远镜产生的影像是倒置的,观赏地面景物的望远镜和双筒望远镜使用棱镜(一般为普罗棱镜)或是在物镜和目镜之间再安装一个或更多的透镜将影像转正,这样就能看见正立像。
许多形式的望远镜会使用次镜(副镜)甚至第三个镜片来折叠光路,这些也许是光学设计的整体部分(卡塞格林反射镜和其他类似),但也有望远镜以更简洁的方法和在更方便的位置上安置目镜或探测器使用。在大型望远镜上,这些附加的镜片通常是为了提供更大的视野或是改善影像的品质。
角分辨率
忽略大气扰动(视宁度或称视象度)对影像品质的影响和光学望远镜的缺点,一架光学望远镜的角分辨率取决于物镜,也就是望远镜口径大小。
实际上,口径越大,角分辨率就越好。此处要特别强调的是,角分辨率不是为望远镜的最大放大率(或倍率)所提供的,经销商所提供的最大倍数是望远镜倍率的上限值,由于超越了物镜能力范围的最大倍率与角分辨率,不能把影像变得更清楚,通常得到的影像品质也是最差的。
对大型的固定地基望远镜,角分辨率的极限是由视象度决定,现今发展之望远镜安置在大气层之上,来消除空气对影像扰动影响角分辨率,也就是太空望远镜、气球望远镜和安装在飞机上的望远镜(古柏机载天文台、同温层红外线天文台(SOFIA)或将地基望远镜加装调适光学和斑点成像。)
近来,光学望远镜的综合口径阵列变得更实用,经由空间中一组小口径望远镜组合,在小心操控的光学平面连结下,可以获得更高的分辨率。但是这些干涉仪仍只能用于观测明亮天体,像是恒星或是活跃星系核,例如参宿四的星斑影像可以在此看见。
焦长和焦比
焦距决定了望远镜在配上目镜、一定大小的CCD或普通底片后可能观看的视野大小。望远镜的焦比(焦距比或f数,即摄影术语之“光圈”)是焦长和物镜口径(直径)比值。因此当口径(集光力)不变时,焦比低的视野较大。广角望远镜(像是天体照相仪)用来追踪卫星和小行星,或是从事宇宙射线的研究和巡天观测。低焦比望远镜的像差比高焦比的更难以消除。
集光力
一架望远镜的集光力直接与物镜(透镜或镜片)的直径(即口径)有关。要注意圆面积与半径的平方成正比,因此当望远镜的镜片直径增加三倍时,集光力会增加九倍,口径越大收集的光线越多;另外灵敏度高的影像设备(如CCD)能在较少的光量下获得比较好的影像品质。
研究用望远镜
几乎所有用于研究的大型天文望远镜都是反射镜,其原因是:
在采用透镜之下,必须整块镜片材料皆为没有缺点和均匀而没有多相性,而反射镜只需要将一个表面完美的磨光,磨制相对简易。
除真空环境下,不同颜色的光在穿透介质时会有不同的播速度,这会造成折射镜特有的色差。
大口径透镜在制造和操作上都有技术上的困难。其一是所有的材料都会因为重力而下垂,观测举得最高而且也是相对较重的透镜只能在镜片周围加以支撑,另一方面,面镜除了反射面以外,可以在反射面的背面和其他的侧边进行支撑。

光学天文望远镜的镜片是什么材质的?

6. 光学镜片光圈勾边怎么修?

对不起 不是很清楚